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SIMkNN: A Scalable Method for In-Memory kNN
Search over Moving Objects in Road Networks
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Abstract—Nowadays, many location-based applications require the ability of querying k-nearest neighbors over a very large scale of
moving objects in road networks, e.g., taxi-calling and ride-sharing services. Traditional grid index with equal-sized cells can not adapt
to the skewed distribution of moving objects in real scenarios. Thus, to obtain the fast querying response time, the grid needs to be split
into more smaller cells which introduces the side-effect of higher memory cost, i.e., maintaining such a large volume of cells requires a
much larger memory space at the server side. In this paper, we present SIMkNN, a scalable and in-memory kNN query processing
technique. SIMkNN is dual-index driven, where we adopt a R-tree to store the topology of the road network and a hierarchical grid
model to manage the moving objects in non-uniform distribution. To answer a kNN query in real time, SIMkNN adopts the strategy
that incrementally enlarges the search area for network distance based nearest neighbor evaluation. It is far from trivial to perform the
space expansion within the hierarchical grid index. For a given cell, we firstly define its neighbors in different directions, then propose a
cell communication technique which allows each cell in the hierarchical grid index to be aware of its neighbors at any time. Accordingly,
an efficient space expansion algorithm to generate the estimation area is proposed. The experimental evaluation shows that SIMkNN
outperforms the baseline algorithm in terms of time and memory efficiency.

Index Terms—k-nearest neighbors, road network, hierarchical grid index.
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1 INTRODUCTION

IN this paper, we study the problem of finding the snapshot
k nearest neighbors (kNN) of moving objects for a query

point q in a road network. Nowadays, efficient snapshot
kNN query processing over moving objects in road net-
works has become an essential building block for many
location-based applications, e.g., both the ride hailing and
the ride sharing services [1], [2] need to find the k nearest
drivers, in terms of the network distance, for the passengers
in real-time. Didi, the largest taxi-hailing company in China,
claims that the total number of daily requests is approaching
10 million during peak hours [3]. This extreme large number
of requests poses a big challenge to the spatial kNN query
processing. The faster the result is located, the shorter the
response time is, the higher the possibility that the returned
result is still valid, and the sooner the incoming requests
can be served. In other words, the capability of processing
a large number of kNN queries simultaneously is critical to
many real-time location-based applications. Consequently,
we devote this paper to the problem of processing snapshot
kNN searches over moving objects in a road network, and
we assume in-memory database is available to maintain the
index and the underlying road network because of the high
performance and popularity of in-memory databases [4], [5].

• B.Cao, C.Hou and J.Fan are with the College of Computer Science,
Zhejiang University of Technology, Hangzhou, China
E-mail: bincao@zjut.edu.cn, houcy@zjut.edu.cn, fanjing@zjut.edu.cn

• S.Li is with the Netease, Inc., Hangzhou, China. E-mail:
hzlisuifei@corp.netease.com

• J.Yin is with the College of Computer Science, Zhejiang University,
Hangzhou, China. E-mail: zjuyjw@cs.zju.edu.cn

• B.Zheng is with the School of Information Systems, Singapore Manage-
ment University. E-mail:bhzheng@smu.edu.sg

• J.Bao is with the Microsoft Research Asia, Beijing, China. E-mail:
jiebao@microsoft.com

Manuscript received April 19, 2016

Although the snapshot kNN search is static as it is based
on a static query point, the underlying objects are moving.
To be more specific, given a query q that is processed at time
stamp ti, we can only guarantee that the located k objects
are nearest to q at time stamp ti. However, if the processing
of the query takes ∆t, the result is only returned to the query
issuer at time stamp (ti+∆t). The larger the ∆t is, the higher
the likelihood that the returned k objects are no longer the
real k nearest ones as objects change their positions from ti
to (ti + ∆t). Here, we name ∆t as staleness, and ideally the
value of staleness should be as small as possible. In order
to achieve a small staleness value, the index structure that
indexes the moving objects should support efficient update
operations as underlying objects are expected to change
their locations continuously; and the query search algorithm
should support efficient kNN searches.

There are a few of existing approaches that try to reduce
the value of staleness by taking the above two mentioned
challenges into consideration, among which MOVNet [6],
[7], [8] is a representative. It constructs a dual-index, includ-
ing an on-disk R-tree [9] to store the road network and an
in-memory grid index to deal with the frequent location
updates from the moving objects. In addition, MOVNet
restricts the network distance based processing of kNN to
a small range instead of the whole network in order to
address the efficiency issue. It loads the road network in
a small search range via a range query over R-tree, and
approximates the grid cells that contain at least k objects
within this small search range based on Euclidean distances.
The search space can be gradually expanded to finish the
search.

MOVNet performs an equal partition to build the grid
index. The simplicity of equal partition does facilitate the
update operations. However, it also brings in challenges for
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Fig. 1. Space expansion for estimating result space

query processing. It is well-known that according to Pareto
principle, 80% of the traffic happens within 20% of the road
network. In other words, the distribution of moving objects
is expected to be skew [10], [11], [12]. Consequently, the real
capacity of different grid cells is expected to be very dif-
ferent which significantly deteriorates the query processing
performance [13]. An example is plotted in Fig. 1(a). Assume
a 4NN query is issued at the query point q. Initially, the
search space L0 (i.e., the dark grey area) only covers the
current grid cell where q falls within. However, as there
are only three objects in L0, the search space has to be
expanded to L1 depicted as the light grey area in Fig. 1(a)
and in total 16 objects are retrieved. In order to locate the 4
nearest objects, we need to find the network distances from
q to all the 16 objects which is very expensive. In order to
reduce the number of network distance computations, we
would like to limit the area expanded. If we are able to
expand L0 to L1 depicted in Fig. 1(b), the total number
of distance calculations could be reduced from 16 to 6.
However, the equal-sized grid cells only support grid-cell-
based expansion, i.e., the initial search range covering 1× 1
grid cell will be expanded to 3 × 3 cells, and then to 5 × 5
cells, and so on. Consequently, the number of distance
calculations and the size of search range could be reduced
if the grid cell size becomes smaller. However, the smaller
grid cell size increases the total number of grid cells which
increases the storage overhead for grid index. Consequently,
there is a tradeoff between the storage overhead and the
query performance.

Alternatively, we propose SIMkNN, a Scalable method
for In-Memory kNN search over moving objects in road
networks as an enhanced version of MOVNet. The main
improvement is introduced by the hierarchical grid index
(in short H-grid) which performs an uneven grid partition.
H-grid splits a cell into sub-cells when the number of objects
exceeds its capacity, which shares the similar mechanism
as Quad-trees and other hierarchical structures [14]. Hence,
H-grid [15] index partitions the grid cells based on the
popularity of the sub-region covered by grid cells, and it
partitions a cell into multiple smaller sub-cells if the number
of objects inside the cell is larger than a threshold. Suppose
the cell capacity is 4, the cell in the top-right corner of
Fig.1(b) will be split into 2 × 2 sub-cells (denoted by the
dotted lines). Grid cells under H-grid are capacity-even
but size-uneven. This means when we need to expand
the search area during kNN searches, all the neighboring
cells of the current search area share the same capacity
but different sizes. For those denser regions, they will be
covered by more grid cells, as compared with normal grid

index. In other words, kNN search will evaluate the denser
regions gradually. Take the top-right cell of Fig.1(b) as an
example. The expansion will reach the light grey colored
sub-cell first. Only when the current expanded search region
still does not bound enough objects, the search range will
be expanded further. Consequently, H-grid is expected to
reduce the number of distance calculations and improve the
search performance.

Though the idea ofH-grid index is simple and not totally
new, how to apply it to SIMkNN is not trivial and there are
two main challenging issues we have to address.
• How to locate the neighbouring cells for a given

cell in H-grid index? A fundamental building block
for the expansion of the search area is to locate the
neighbouring cells of a given cell. Unlike traditional
grid index, cells in H-grid have different sizes and
they are located in the different levels of the hierar-
chical index structure. We name this challenge as cell
locating. To the best of our knowledge, there is no
existing work that can support cell locating.

• How to expand the search space based on H-grid
index? If the space is partitioned into equal-sized
grid cells, the expansion of the search space is guided
by the side length of each grid. However, H-grid
has heterogeneous setting where cells have different
sizes. We need to propose mechanisms to evaluate
the advantages of different cell side length and to
efficiently find the optimized side length for search
space expansion.

To enable cell locating, we propose a cell communication
technique to make sure each cell in H-grid has the up-to-
date knowledge of its neighbours. The communication is
triggered whenever a cell merge or a cell split operation
takes place. The new cells will find out their neighbours and
meanwhile inform their neighbours of their arrival. Because
of the complete and up-to-date knowledge of neighbouring
cells, SIMkNN enables a more conservative search space
expansion by expanding the search space to the smallest cell
among the neighbours. This conservative expansion strat-
egy helps to improve the search performance significantly.
To sum up, we have made mainly four contributions in this
paper.

1) We propose SIMkNN, a scalable in-memory process-
ing method for snapshot kNN queries over moving
objects in road networks.

2) We present a cell communication technique which
makes sure that each cell ofH-grid index is aware of
the up-to-date neighboring cells. To the best of our
knowledge, we are the first to solve the cell locating
problem for H-grid index.

3) We introduce an efficient space expansion method
to estimate the result space for kNN query based on
the cell communication technique in H-grid index.

4) We build a prototype for SIMkNN and demonstrate
its super scalability and efficient search perfor-
mance through an extensive experimental evalua-
tion study.

The remainder of this paper is organized as follows.
Section 2 presents preliminaries for SIMkNN. Section 3 intro-
duces a cell communication technique based on the H-grid
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Fig. 2. A sampleH-grid index with the split factor m = 2 and the capacity
Nc = 4

index. Section 4 describes the details of query processing
on top of H-grid index, including the conservative search
space expansion strategy. Section 5 reports the results of
experimental evaluation and Section 6 reviews related work.
Finally, Section 7 concludes this paper with some directions
for future work.

2 PRELIMINARIES

In this section, we first present a brief introduction to theH-
grid index and then introduce several terms related to cell
neighbours that will be commonly used in the rest of this
paper.

2.1 H-grid Index
H-grid index is an improved grid index where a cell capac-
ity parameter Nc and a split factor m are introduced. Similar
to other hierarchical indices such as Quad-tree [14], a cell
that has too many objects and exceeds its capacity Nc will
be split into m × m equal-sized smaller sub-cells. Initially,
the entire search space is partitioned into m × m equal-
sized grid cells, and the original H-grid index only indexes
those m × m grid cells. Thereafter, we insert the objects
into corresponding grid cells based on their locations. A
split operation is triggered when the number of objects
associated with a cell Ci exceeds Nc. Accordingly, cell Ci

is split into m×m equal-sized cells Ci1, Ci2, · · · , Cim2 and
the objects are re-associated with the new cells. In terms of
H-grid index, we insert m×m child cells under cell Ci, and
we name Ci as the parent cell of cells Ci1, · · · , Cim2 . Cells
without any child cell are named as leaf cells, and objects
are only associated with leaf cells. Similarly, when objects
change their positions, they might need to be moved from
one leaf cell to another leaf cell. A cell merge operation will
be triggered when the total number of objects associated
with any of the leaf cells falls below Nc. All the leaf cells
will be removed, and the parent cell then becomes the new
leaf cell.

An example H-grid index is depicted in Fig. 2. We
assume Nc = 4 and m = 2. Initially, the entire search space
is partitioned into 2 × 2 equal-sized grid cells, denoted as
C1, C2, C3, and C4. Objects are inserted into corresponding
cells. When |C1| reaches 4, a cell split operation is triggered.
C1 is then partitioned into 2×2 smaller sub-cells, denoted as
C11, C12, C13, and C14. C1 is the parent cell of cells C11, C12,
C13, and C14. To facilitate our discussion, we differentiate
grid cells based on the level they are. Initial m×m grid cells
are in level 1, their immediate children are in level 2, and so
on. The larger the level number is, the smaller the grid cell
is. We also plot the index structure in Fig. 2 to facilitate the
understanding of the structure of H-grid index. Note all the
leaf cells are in grey color in the index.
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Fig. 3. Neighbors in eight directions for a given cell

Compared with traditional grid index, H-grid index is
more adaptable to the skewed distribution of objects. In
addition, the search expansion in SIMkNN is cell-size based.
To be more specific, let Ri represent the original search
space and Ri+1 be the expanded search area. Both Ri and
Ri+1 have rectangular shape and are centered at q. Their
side length difference is set to the twice of the side length
of the neighbouring cells. Under H-grid index, the size of
the neighbouring cells could be very different. If we use
the side length of the smallest neighbouring cell to guide
the expansion, the expansion will be performed in a slower
pace, which helps to expand the search space gradually and
hence to increase the number of candidates step by step.

Note that, given a H-grid index with m = 2, it can be
considered as a form of quad-tree. Hence, the methodology
presented in this paper can also work on quad-tree. The
advantage of using H-grid index is that flexibly tuning the
split factor can help us gain the optimal performance.

2.2 Cell Neighbors
In the following, we introduce a few terms that will be
frequently used in the rest of this paper.

For each cell Ci in H-grid index, its neighbouring cells
locate in eight directions. Based on their relative loca-
tions to ci, those eight neighbouring cells could be parti-
tioned into two clusters, namely side neighbours and angle
neighbours. To be more specific, side neighbours refer to
up/down/left/right-side neighbours, and angle neighbours
refer to top-left/top-right/bottom-left/bottom-right neigh-
bours. An example is depicted in Fig. 3. Cells labelled as
1, 2, and 5 are up neighbours of the grey colored cell, and
hence belong to side neighbours; cells labelled as 6 and 7 are
right neighbours, and hence also belong to side neighbours.
Note that, a cell might have multiple neighbours in each
side direction, but it has one and only one neighbour in each
angle direction. The knowledge of its neighbouring cells in
eight directions helps the cell to update its neighbours when
it performs split or merge action.

Given the fact that multiple neighbouring cells might
be located at one side of a given cell ci in H-grid index,
we maintain four containers for cell ci. Each container of
ci corresponds to one side direction, storing the IDs of ci’s
neighbouring cells located at that side direction. Note the
neighbouring cells corresponding to each side direction are
sorted, based on ascending order of their latitude values
or longitude values. For example, the neighbouring cells 1,
2, and 5 shown in Fig. 3 are stored in the order of 1 first, 2
second, and 5 last in the container that represents the up side
of the grey cell. These orders can facilitate the computation
of the neighbouring cells for the newly split cells.

Last but not least, we would like to define intersection
cells and adjacent cells of any given region Ri. The former
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Fig. 4. Illustration of sub-cell types

refers to the grid cells that overlap with Ri, and the latter
refers to the grid cells that are adjacent to Ri without any
overlap. Both types of cells are useful when implementing
the space expansion which will be introduced later.

3 CELL COMMUNICATION WITHIN H-GRID

In this section, we propose a cell communication technique
that makes sure each cell is aware of its neighbouring cells,
even in a dynamic environment where cells are expected to
perform frequent cell split or cell merge. In the following, we
explain the cell communication triggered by cell split and
cell merge respectively. Note, only cell split or cell merge
actually changes the grid partition of H-grid index.

3.1 Cell communications during splitting

When a cell ci splits, a set of new sub-cells cij is generated.
We need to inform all ci’s neighbouring cells of ci’s expira-
tion as ci is no longer available, and hence neighbouring
cells of ci have to replace ci with proper sub-cells that
are newly formed, and meanwhile we also need to find
all the neighbouring cells for new sub-cells cij . We will
first explain how to find new neighbouring cells for the
newly formed sub-cells, and then explain how to inform
ci’s original neighbouring cells of the expiration of ci and
the arrival of new sub-cells.

Given a parameter m, cell ci is split into (m×m) sub-cells
cij . Based on the positions of cij within ci, they are clustered
into three types, namely angle cells, side cells and inner cells.
Angle cells refer to the sub-cells that are located at the four
corner locations of ci. There are in total four angle cells, one
at each corner, regardless of the value of m. Side cells refer
to the cells that are located on up/down/left/right side of
the parent cell ci, and there are in total 4×(m−2) side cells,
among those m × m sub-cells. Inner cells refer to the rest
sub-cells, in total (m − 2)2 inner cells. An example split is
depicted in Fig. 4. The parent cell e is split into 3 × 3 sub-
cells. Sub-cells (1, 1), (1, 3), (3, 1), and (3, 3) are the angle
cells, in total four; sub-cells (1, 2), (2, 1), (2, 3), and (3, 2)
are the side cells, in total 4 × (m − 2) = 4; sub-cell (2, 2) is
the inner cell, in total (m− 2)2 = 1.

Next, we set forth the algorithm for obtaining neighbour
cells for child cells. The main idea here is to apply different
strategies to different cells according to their types, positions
and the neighbour cell directions. Totally, there are three
strategies: (1) Inheritance Strategy where the neighbours for
the child cell are directly inherited from the neighbours of
the parent; (2) Selective Inheritance Strategy where a subset
of neighbours of the parent are selected as the neighbours
for the child cell; (3) Non-Inheritance Strategy where no
neighbouring cell is inherited from the parent and instead,
they can be obtained by simple computation based on the
cell positions. In addition, given a parent cell ci that is

partitioned into child cells cijs, we cluster the neighbour
cells of cijs into two groups based on their sources, namely
out-neighbours and in-neighbours. The former refers to all the
neighbouring cells that are the neighbouring cells of the
parent cell ci; and the latter refers to all the neighbouring
cells that are newly formed cijs. The first two strategies
work on out-neighbour inheritance and the third strategy
focuses on the in-neighbour computation.
Inheritance strategy for angle cells. For a newly generated
sub-cell cij that is an angle cell located at direction x,
it shares the same neighbouring cell at direction x as its
parent cell ci. In other words, the neighbouring cell of cij
at direction x could be directly inherited from its parent cell
ci, as both the parent cell ci and the sub-cell cij share the
same neighbouring cell in the same angle direction x. This
direct inheritance is enabled by the fact that there is only one
angle neighbour in any given angular direction. As shown
in Fig. 4, the sub-cell (3, 1) is an angle cell of the parent cell e,
located in top left direction. Consequently, the neighbouring
cell of the sub-cell (3, 1) is set to the angle neighbour of e
corresponding to the top left direction (i.e., cell a).
Selective inheritance strategy for side cells. This strategy
aims to find out-neighbour cells for the sub-cells that are
side cells by selectively inheriting the neighbouring cells
from the parent. Note this strategy is only applicable for side
cells. For the purpose of better illustration, we assume the
grid cells are placed in a two-dimensional space. Each cell is
represented by (xs, ys, xe, ye), where xs and xe refer to the
starting and ending positions of the cell along X dimension
respectively, and ys and ye refer to the starting and ending
positions of the cell along Y dimension respectively. In the
following, we consider a cell n that is a neighbouring cell
of ci and another cell cij that is a side cell newly generated
by the splitting of ci. The details of this strategy are listed
below, based on the positions of n and cij .

• Case 1. For newly formed side/angle cells, they in-
herit the side neighbour cells from their parent that
are adjacent to them. To be more specific, if n.xe =
cij .xs ∧ (n.[ys, ye] ⊆ cij .[ys, ye] ‖ cij .[ys, ye] ⊆
n.[ys, ye]), n is one of cij ’s left side neighbouring
cells; if n.xs = cij .xe ∧ (n.[ys, ye] ⊆ cij .[ys, ye] ‖
cij .[ys, ye] ⊆ n.[ys, ye]), n is one of cij ’s right side
neighbouring cells; if n.ys = cij .ye ∧ (n.[xs, xe] ⊆
cij .[xs, xe] ‖ cij .[xs, xe] ⊆ n.[xs, xe]), n is one of
cij ’s up side neighbouring cells; if n.ye = cij .ys ∧
(n.[xs, xe] ⊆ cij .[xs, xe] ‖ cij .[xs, xe] ⊆ n.[xs, xe]), n
is one of cij ’s down side neighbouring cells.

• Case 2. For newly formed angle cells, they inherit
certain angle neighbour cells from their parent. To
be more specific, given a top-left angle cell cij , if
cij .xe ∈ [n.xs, n.xe]∧cij .ye = n.ys, n is the top-right
neighbour cell of cij ; if cij .ys ∈ [n.ys, n.ye]∧cij .xs =
n.xe, n is the bottom-left neighbour cell of cij ; given
a top-right angle cell cij , if cij .xs ∈ [n.xs, n.xe] ∧
cij .ye = n.ys, n is the top-left neighbour cell of cij ; if
cij .ys ∈ [n.ys, n.ye] ∧ cij .xe = n.xs, n is the bottom-
right neighbour cell of cij ; given a bottom-left angle
cell cij , if cij .ye ∈ [n.ys, n.ye] ∧ cij .xs = n.xe,
n is the top-left neighbour cell of cij ; if cij .xe ∈
[n.xs, n.xe] ∧ cij .ys = n.ye, n is the bottom-right
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neighbour cell of cij ; given a bottom-right angle
cell cij , if cij .ye ∈ [n.ys, n.ye] ∧ cij .xe = n.xs, n
is the top-right neighbour cell of cij ; if cij .xs ∈
[n.xs, n.xe] ∧ cij .ys = n.ye, n is the bottom-left
neighbour cell of cij .

• Case 3. For newly formed side cells, they inherit
certain angle neighbour cells from their parent. To
be more specific, given a left side cell cij , if cij .ye ∈
[n.ys, n.ye]∧cij .xs = n.xe, n is the top-left neighbour
cell of cij ; if cij .ys ∈ [n.ys, ye] ∧ cij .xs = n.xe, n is
the bottom-left neighbour cell of cij ; given a right
side cell cij , if cij .ye ∈ [n.ys, n.ye] ∧ cij .xe = n.xs,
n is the top-right neighbour cell of cij ; if cij .ys ∈
[n.ys, n.ye] ∧ cij .xe = n.xs, n is the bottom-right
neighbour cell of cij ; given a up side cell cij , if
cij .xs ∈ [n.xs, n.xe] ∧ cij .ye = n.ys, n is the top-
left neighbour of cij ; if cij .xe ∈ [n.xs, n.xe]∧cij .ye =
n.ys, n is the top-right neighbour of cij ; given a down
side cell cij , if cij .xs ∈ [n.xs, n.xe] ∧ cij .ys = n.ye, n
is the bottom-left neighbour cell of cij ; if cij .xe ∈
[n.xs, n.xe] ∧ cij .ys = n.ye, n is the bottom-right
neighbour cell of cij .

Note that there is no need to compare each parent
neighbour cell in the out-neighbour set with the child cell to
judge whether it can be inherited. Instead, considering that
the neighbouring cells on side directions are sorted in order,
as long as we can only obtain the first and the last parent
neighbour cells that can satisfy the corresponding judging
rule, the cells between them can be directly retrieved.
Non-Inheritance Strategy. Unlike previous strategies where
the neighbour cells can be inherited from the parent, this
strategy focuses on the in-neighbours, i.e., no inheritance
exists since all the in-neighbours refer to the newly gener-
ated sub-cells and they can be computed within the scope of
the parent cell itself. The neighbouring cell computation is
based on the representation of the relative positions for the
child cells.

In H-grid index, m is the split factor. Whenever a grid
cell splits, m×m sub-cells will be generated. Each child cell
can be identified by (i, j) where i and j are the row index
and column index respectively. As show in Fig. 4, cell e is
split to 3 × 3 sub-cells and (3, 1) is the top-left angle-cell,
(1, 3) is the bottom-right angle-cell. Using these row and
column indices can help us to locate the neighbours for a
given child cell. Mainly, there are three cases involved based
on the cell type.

• Case 1: angle-cells. Given the top-left angle-cell (m, 1),
cells (m−1, 1), (m, 2), (m−1, 2) form the down-side,
right-side, and bottom-right neighbours of (m, 1).
Similarly, we can derive the in-neighbours of three
directions for the other three angle cells.

• Case 2: side-cells. Given a left side-cell (x, 1) with
x ∈ [2,m − 1], cells (x + 1, 1), (x − 1, 1), (x, 2),
(x + 1, 2), (x − 1, 2) are the up, down, right, top-
right and bottom-right neighbour cell respectively.
Similarly, we can infer the neighbour cells for other
side-cells.

• Case 3: inner-cells. Given a child cell that is an inner-
cell(x, y) with x ∈ [2,m − 1] ∧ y ∈ [2,m − 1], cells
(x, y+1), (x, y−1), (x−1, y), (x+1, y), (x−1, y+1),

TABLE 1
Neighbors for child cells in Fig.4 example

Direction cell(2, 1) cell(3, 1) cell(3, 2) cell(2, 2)
top-left d a b cell(3, 1)

top-right cell(3, 2) b b cell(3, 3)
bottom-left d d cell(2, 1) cell(1, 1)

bottom-right cell(1, 2) cell(2, 2) cell(2, 3) cell(1, 3)
left d cell(2, 1) cell(3, 1) cell(2, 1)

right cell(2, 2) cell(3, 2) cell(3, 3) cell(2, 3)
up cell(3, 1) b b cell(3, 3)

down cell(1, 1) cell(2, 1) cell(2, 2) cell(1, 2)

(x + 1, y + 1), (x − 1, y − 1), (x + 1, y − 1) are the
corresponding neighbouring cells in up, down, left,
right, top-left, top-right, bottom-left, and bottom-
right, respectively.

Example. To ease the understanding of above strategies, we
use the example shown in Fig.4 for illustration. Assume
the cell e is split to 3 × 3 sub-cells and the neighbouring
cells for three types of child cells in different directions
are summarized in Table 1. For instance, cell(3, 1) is a top-
left angle-cell and cell a is its out-neighbour in the top-left
direction, which can be obtained by using the inheritance
strategy. To get its out-neighbours {d, d, b, b} in {left, bottom-
left, up, top-right} sides, we apply the rules in case 2 of
the selective inheritance strategy. The case 1 in non-inheritance
strategy can be applied to cell(3, 1) to compute the in-
neighbours {cell(3, 2), cell(2, 2), cell(2, 1)} in directions of
{right, bottom-right, down} sides. �

After we explain how to find the neighbour cells of
newly formed sub-cells, we move our focus to all the cells
that have the original cell ci as one of their neighbour
cells, and discuss how to inform them the splitting of ci.
Note that only the out-neighbours of the newly formed
angle or side cells (i.e., those neighbour cells identified
via inheritance strategy or selective inheritance strategy
in above process) are affected in this process. Assume a
cell n is an out-neighbour of a newly formed cell cij at
direction X . Cell cij will compose a message in the form of
〈IDr, Dir, IDp, IDc〉, where IDr refers to the cell ID of the
receiver (e.g., ID of cell n in our example), Dir refers to the
direction in which cell ci serves as one of the neighbour cells
of n (e.g., the opposite of direction X), IDp refers to the cell
ID of the one that splits (e.g., ID of cell ci in our example),
and IDc refers to the cell ID of a newly formed sub-cell (e.g.,
cij in our example). In other words, cij composes a message
〈n, opp(X), ci, cij〉 to inform cell n that its neighbour cell ci
located at opp(X) direction is no longer valid, and it shall
be replaced by new cell cij .
Example. We continue to use the example depicted in Fig.4
for illustration. When cell e splits, angle-cells (1, 1), (3, 1),
(3, 3), (3, 1) and side-cells (2, 1), (3, 2), (2, 3), (1, 2) need to
send messages to their out-neighbours. Take cell (3, 1) as an
example, since it is the top-left angle-cell, its out-neighbours
only exist in five directions, i.e., top-left, left, bottom-left, up
and top-right. Based on the results shown in Table 1, the
messages that cell(3, 1) sends are listed in Table 2. �

Based on the content of Table 2, we observe that a cell
n might receive multiple messages from the same sub-
cell cij because n is an out-neighbour of cij in multiple
directions. This is mainly caused by the fact that cell n is
larger than sub-cell cij . To save the cost of message sending,
we propose message merging strategy as the solution. In the
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TABLE 2
Messages composed by cell(3, 1) in Fig.4

Message No. Out-neighbor Direction Message Content
1 top-left {a, bottom-right, e, (3,1)}
2 left {d, right, e, (3,1)}
3 bottom-left {d, top-right, e, (3,1)}
4 up {b, down, e, (3,1)}
5 top-right {b, bottom-left, e, (3,1)}

(1,1) (1,2) 

(3,1) 

(2,1) 

(1,3) 

(3,3) (3,2) 

(2,2) (2,3) 
a 
b 
c 

Cell 1 Cell 2 Cell 1 Cell 2 

Split 

Cell 2  

Fig. 5. Example for message translating

case where the size of an out-neighbour n is larger than that
of a sub-cell cij , n is expected to receive multiple messages
from cij where n serves as an out-neighbour in different
directions. We merge the messages composed by the same
sub-cell with the same receiver together. To be more specific,
given two messages m1 = 〈IDr1 , X1, IDp1

, IDc1〉 and
m2 = 〈IDr2 , X2, IDp2

, IDc2〉, if IDr1 = IDr2 ∧ IDp1
=

IDp2
∧IDc1 = IDc2∧X1 6= X2, we form a merged message

m in the form of 〈IDr1 , X, IDp1
, IDc1〉. Note direction X

might be X1 or X2, dependent on the relative position of
cell IDc1 to out-neighbour cell IDr1 .

On the contrary, when cell n is smaller than a sub-
cell cij , it is expected that a sub-cell cij is not only a
neighbour cell of n in opposite X direction but also a
neighbour cell of n in other directions. An example is shown
in Fig. 5. Cell 2 is split into 3 × 3 sub-cells, and cell b
is one of the out-neighbours along left side of (2, 1). Ac-
cordingly, cell (2, 1) will issue a message 〈b, right, 2, (2, 1)〉.
However, we notice that (2, 1) is not only a neighbour in
right direction (the opposite of left direction) but also a
neighbour in top-right direction and bottom-right direction.
In other words, although cell b is not a neighbour of (2, 1)
in the top-left direction or in the bottom-left direction,
(2, 1) needs to send messages 〈b, top-right, 2, (2, 1)〉 and
〈b, bottom-right, 2, (2, 1)〉. Accordingly, we propose message
extension strategy as a solution. When the size of a sub-cell
cij is larger than that of an out-neighbour n that is located
at X direction, cij is a neighbour cell of n in opposite X
direction, and it might be a neighbour cell of n in adjacent
direction(s) (e.g., top-left and bottom-left are directions adja-
cent to right; top-left and top-right are adjacent to up). To be
more specific, 〈IDr, Dir, IDp, IDc〉 might be translated to
〈IDr, Adj(Dir), IDp, IDc〉. Function Adj(Dir) returns the
two adjacent directions of Dir. However, examinations have
to be performed to verify whether IDc is a real neighbour-
ing cell in both adjacent directions of Dir, as an extended
message is sent only when IDc is a real neighbour cell in that
particular direction. For example, cell a is an out-neighbour
in the left direction of cell (2, 1) and accordingly cell (2, 1)
will issue a message m = 〈a, right, 2, (2, 1)〉. Adj(right)
returns top-right and bottom-right, but (2, 1) is a neighbour
of a in bottom-right direction but not in top-right direction.
Consequently, message m is only extended for bottom-right
direction.

3.2 Cell communications during merging

In H-grid index, when an object is removed from a cell
cij , the total number of objects associated with the parent
cell ci of cij is decreased by one. When the number falls
below the capacity of ci, a merge of all the sub-cells under
ci is triggered as cell ci now is able to accommodate all the
objects. During cell merging, the neighbour cells of cij need
to update their neighbours as cijs are no longer valid, and
meanwhile we need to find neighbours for cell ci. In the
following, we detail these two steps.

First, cells cijs need to inform their out-neighbours n
that cijs are no longer available via messages in the form
of 〈n,Dir, cij , ci〉, so out-neighbours ns will replace cijs
with ci. Again, we use the example in Fig. 4 for illustration.
Suppose that the 3 × 3 sub-cells in grey area are going to
be merged into a new cell e, and they need to inform their
out-neighbour cells their expiration and the arrival of new
cell e. For example, cell (2, 1) sends following three mes-
sages: 〈d, bottom-right, (2, 1), e〉, 〈d, top-right, (2, 1), e〉 and
〈d, right, (2, 1), e〉. Clearly, these messages will be merged to
〈d, right, (2, 1), e〉 since cell (2, 1) is only on the right side of
cell d.

Second, we need to find neighbours for the newly
formed cell ci by leveraging the out-neighbours of cells cijs.
Particularly, the neighbour cells of ci in the angle direction
can be inherited directly from angle cells cijs that are located
at (1, 1), (1,m), (m, 1), and (m,m). For example, as shown
in Fig. 4, the top-left neighbour of cell e is the same as
the top-left neighbour of angle cell (3.1) (i.e., cell a), the
top-right neighbour of cell e is the same as the top-right
neighbour of angle cell (3, 3) (i.e., cell c), and so on. The
neighbours in side directions for the merged cell ci are the
union of the out-neighbours of the side-cells before merging.

4 SIMKNN QUERY PROCESSING

H-grid index can improve the efficiency of kNN query pro-
cessing, since it is able to obtain an appropriate search scope
for moving objects and the partial road network, especially
when the objects are in skewed distribution. In this section,
we firstly explain the overall query processing framework
for SIMkNN and then present the implementation details for
the critical step, i.e., H-grid based Result Space Estimation.

4.1 Overall query processing framework

SIMkNN adopts a H-grid index to partition the entire search
space that captures all the positions of the moving objects
at time t into a hierarchical grid of square-shaped cells with
different levels and sizes. Each leaf cell maintains a list of
objects whose coordinates fall inside the cell space; while
each parent cell Ci maintains a list of m×m child cells that
are generated by splitting Ci. Besides, each cell is aware
of its neighbors in eight directions at any time. R-tree in
SIMkNN is used to store the connectivity information, such
as edges and vertices, of the road network where the objects
move on. Then, the snapshot kNN query processing in
SIMkNN consists of two steps, namely result space estimation
and kNN retrieval.

To be more specific, SIMkNN first locates the query point
q into a leaf cell cij , and slowly expands the search space
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based on the minimum side length of any neighbouring cells
of the current search space, until top-k objects that are clos-
est to q based on Euclidean distance are located. To be more
specific, let N(cij) refer to the set of neighbouring cells, and
let d refer to the minimum side length of any neighbouring
cells, i.e., d = min∀c∈N(cij)c.side. Each expansion expands
the search space from one square Ri to another larger square
Ri+1 with Ri+1.side−Ri.side = 2d. Once we locate the set
of k objects having smallest Euclidean distances to q, we
complete the step of result space estimation, and we start
the next step.

In the kNN objects retrieval step, SIMkNN utilizes the
estimated area resulted from previous step to launch a
range query, extracting the edges and vertices from the R-
tree and re-constructing a partial road network that covers
the estimated search area. We adopt an approach that is
similar as INE (incremental network expansion) [16] to expand
the network and to derive the network distance, and each
vertex in the partial network locally constructed maintains
a network distance from itself to the query point q. A local
result set Res is maintained to preserve the top-k objects
with minimum network distances to q, and it is guaranteed
that at least k objects are within the estimated area. Let
Vexp refer to the set of vertices locally available with at
least one adjacent vertex that is not locally available. The
search can be safely terminated if the maximum network
distance from a local result to q does not exceed the min-
imum distance between any vertex in Vexp and q, i.e., if
max∀o∈Res||o, q|| ≤ min∀v∈Vexp

||v, q||1, Res is confirmed to
be the final result set and the search can be terminated. The
correctness of the above mentioned kNN query processing
under SIMkNN is guaranteed by Theorem 1.
Theorem 1. The proposed kNN query processing of SIMkNN

is correct, i.e., the result set Res returned by SIMkNN is
guaranteed to be the real result set.

Proof. Assume the above statement is not correct, and
there is at least one object o′ /∈ Res that has a shorter
network distance to q than a result object o ∈ Res, i.e.,
∃o′ /∈ Res ∧ ∃o ∈ Res, ||o′, q|| < ||o, q||. Here, q refers
to the query point. Because o′ /∈ Res, object o′ has not yet
been visited by our kNN objects retrieval step. This means,
assume o′ is located on edge (va, vb) of the road network,
at least one vertex of the edge has not yet been reached.
To facilitate our discussion, we introduce two notations
Vexp, and Vnot. The former Vexp refers to the set of vertices
locally available with at least one adjacent vertex that is
not locally available, and the latter Vnot refers to the set
of vertices that are not locally available. Obviously, the fact
that o′ has not yet been visited implies following three cases,
i) va ∈ Vexp ∧ vb ∈ Vnot; ii) va ∈ Vnot ∧ vb ∈ Vexp;
and iii) va ∈ Vnot ∧ vb ∈ Vnot. Since any path from a
vertex ∈ Vnot to q has to bypass at least one vertex in
Vexp, we have ∀v ∈ Vnot, ||v, q|| > min∀ve∈Vexp

||ve, q||. To-
gether with the termination condition of kNN retrieval (i.e.,
max∀o∈Res||o, q|| ≤ min∀v∈Vexp

||v, q||), we have ||va, q|| ≥
max∀o∈Res||o, q|| and ||vb, q|| ≥ max∀o∈Res||o, q||. On the
other hand, because o′ is located on the edge (va, vb), we
have ||o′, q|| ≥ min(||q, va||, ||q, vb||). As a result, ||o′, q|| ≥

1. Notation ||o, o′|| refers to the network distance between two objects
o and o′.

min(||q, va||, ||q, vb||) ≥ max∀o∈Res||o, q|| ≥ ||o, q|| which
contradicts our assumption. Consequently, our assumption
is invalid and the proof completes. �

For the step of kNN objects retrieval, many existing kNN
search algorithms are applicable and its implementation is
not the main contribution of our work. Consequently, we
only focus on the implementation of result space estimation
step, whose details will be presented in next section.

4.2 H-grid based Result Space Estimation

The size of the estimated search space has an impact on
the range query issued in the step of kNN objects retrieval.
The larger the estimated search space, the larger the local
network that has to be searched by the range query. Conse-
quently, we adopt a conservative approach to slowly expand
the search space centered at the query point q until the
search space covers at least k objects. Because the search
space is indexed by H-grid index, the neighbouring cells
surrounding the current search space are very likely to be
of different size, which enables gradual expansion of the
search space. In the following, we mainly explain one key
building-block of space expansion, that is how to decide the
expansion size.

To simplify our discussion, we first introduce a few of
data structures used throughout the result space estimation.
Given a search space, set CSneig refers to all the neigh-
bouring cells of the current search space. A cell Ci is a
neighbouring cell of a given search space SS iff SS overlaps
with Ci or Ci is adjacent to SS. When the current search
space is expanded to a larger search space SS′, the set of
original neighbouring cells is partitioned into two disjoint
subsets, CSoverlap and CSinside. The former refers to the
set of cells that intersect or overlap with the expanded
search space SS′; the latter refers to the rest of the cells
that are fully covered by the expanded search space SS′. Set
CScovered refers to the set of cells that are fully covered by
the current search space.

We determine the expansion size based on the size of
all the neighbouring cells, i.e., those cells included in set
CSneig . Since we adopt a conservative approach, we set
the expansion size to the minimum side length of a neigh-
bouring size, i.e., MIN∀c∈CSneig

c.side. Now the problem of
deciding the expansion size is converted to finding the set
of neighbouring cells of a search space. With the help of
CScovered, CSinside, and CSoverlap, the new set of neigh-
bouring cells of the expanded search space can be derived
based on Equation (1). Note, function NEIG(c) is to retrieve
all the neighbouring cells in eight directions of cell c.

NS = ( ∪
c∈CSinside

NEIG(c)− CScovered) ∪ CSoverlap (1)

Algorithm 1 lists the pseudo code of the search space
expansion process. It first locates the center cell, the cell
where the query point q is located, and initializes the search
space to the center cell (lines 1-2). CSneig is empty and
CScovered only contains the center cell (lines 3-4). It then
starts the expansion process. The expansion continues if
there are less than k objects within the current search space,
i.e., the total number of objects that are associated with
any cell included in CScovered is smaller than k (line 5).
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Algorithm 1: Space Exp. for Estimated Result Space
Input : Query point q; number of objects k; H-grid index;
Output: Estimated result space after progressive expansion:

searchSpace

1 centerCell← the cell that contains query point q;
2 searchSpace← centerCell;
3 CScovered ← centerCell;
4 CSneig ← ∅;
5 while there are in total less than k objects in searchSpace do
6 CSinside ← ∅;
7 if CSneig is empty then
8 CSneig ← NEIG(centerCell);

9 else
10 for each cell c ∈ CSneig do
11 if c is fully covered by searchSpace then
12 CSinside ← CSinside ∪ {c};

13 CSoverlap ← CSneig − CSinside;
14 CScovered ← CScovered ∪ CSinside;
15 NS ←

⋃
c∈CSinside

NEIG(c);
16 CSneig ← (NS − CScovered) ∪ CSoverlap;

17 expSize← MIN∀c∈CSneig
c.side;

18 searchSpace← EXP(searchSpace, expSize);

19 return searchSpace

It empties set CSinside that captures all the neighbouring
cells of the current search space but will be fully covered by
the expanded search space after expansion. It then locates
the neighbouring cells that will be maintained by CSneig

set. Note that for the first expansion, CSneig is empty and
we invoke function NEIG(centerCell) to initialize CSneig to
the set of neighbouring cells of the cell that query point q is
located (lines 7-8). For all the following expansions, CSneig

maintains the set of neighbouring cells of the current search
space before expansion. We need to update CSneig for the
expanded search area. We scan cells in CSneig and maintain
cells that are fully covered by the expanded search space
in CSinside (lines 10-12), and the rest in CSoverlap (line 13).
Next, CScovered is updated by including cells in CSinside

(line 14). We derive the new set of neighbouring cells
based on Equation (1) (line 15). CSneig is then updated by
excluding those fully covered cells (i.e., cells in CScovered)
from NS and including those still overlapped cells (i.e.,
cells in CSoverlap) (line 16). The expansion size is set to the
minimum side length of any neighbouring cell maintained
by CSneig (line 17), and the search space is then expanded to
complete one expansion. The above process continues until
the number of objects inside the current search space reaches
k.
Example. As shown in Fig. 6(a), initially centerCell is set to
the cell where q locates. During the first expansion, CSneig

is set to the set of neighbouring cells of centerCell, i.e.,
CSneig = {1, 5, 6, 7, 10, 16}, and the size of expansion, i.e.,
expSize is set to the side length of the smallest neigh-
bouring cell that is cell 5 or cell 6 or cell 7 or cell 10.
The grey coloured region represents the search space after
the first expansion. During the second expansion, neigh-
bouring cells 5, 6, 7, 10 become fully covered and hence
CScovered = CSinside = {5, 6, 7, 10}, and CSoverlap =
{1, 16}. CSneig = {1, 2, 3, 4, 9, 11, 12, 15, 16, 17}. The ex-
pansion size is then set to the side length of the smallest
neighbouring cell (i.e., cell 11 or cell 12), and the dotted-
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(a) 1st and 2nd expansion
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(b) 3rd expansion

Fig. 6. A demonstration for result space estimation

line in Fig. 6(a) bounds the expanded search space after
the second expansion. During the third expansion, cell 11
and cell 12 are fully covered, with CSinside = {11, 12}
and CScovered = {5, 6, 7, 10, 11, 12}. The new set of neigh-
bouring cells CSneig = {1, 2, 3, 4, 9, 13, 14, 15, 16, 17}, and
expand size is set to the side length of the smallest neigh-
bouring cell (i.e., cell 13 or cell 14). The square region
bounded by the dotted line in Fig. 6(b) represents the search
space after the third expansion. �

5 EXPERIMENTS

In order to evaluate the performance of H-grid based kNN
query for moving objects in road network, we have per-
formed a comprehensive simulation, from following three
perspectives. i) We evaluate the performance of H-grid
index embedded with the cell communication in terms of
the memory usage and update time, as reported in Sec-
tion 5.1; ii) we study the effects of result space estimation in
SIMkNN, including the number of objects that are contained
in the estimated space and its time efficiency, as reported
in Section 5.2; iii) we investigate the overall performance of
SIMkNN query processing, as reported in Section 5.3. For the
purpose of comparison, we implemented two baselines. One
is an in-memory version of MOVNet based on traditional
grid index. The other is IER-PHL [17], which is the state-of-
the-art in-memory kNN algorithm. Note that, all algorithms
are implemented using Java with JDK 1.7.0.

All experiments in this section are based on a mixture
of real and synthetic data sets. We use the road network
of Los Angles, CA, USA, containing 264,521 edges and
193,320 nodes. The moving objects on the road network
are generated using Brinkhoff road network generator [18].
Totally, we simulate the scale of 1 million moving objects,
whose scale is much larger than previous studies. Fig. 7
shows the data distribution at time t. Each square denotes
a small area and the intensity of the color indicates the
density of the moving objects. For each set of experiments,
we generate 1, 000 random queries, and report the average
performance. All experiments are evaluated on a PC with
Intel(R) Xeon(R) CPU E5-2637 3.50GHz processor and 8 GB
RAM with Ubuntu Linux 14.04.

5.1 Index Performance
In our first set of experiments, we evaluate the performance
of H-grid index, as compared with grid index employed by
MOVNet. The memory usage and the update efficiency are
employed as the main performance metrics.
Memory usage. We report the memory overhead of H-
grid as a function of cell capacity c and split factor m in
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Fig. 7. The distribution of objects on Los Angles road network

Fig. 8(a) and Fig. 8(b) respectively. Note that, cell capacities
of the grid index are represented by the average number of
moving objects in each cell. Three main observations made
from the simulation results are listed below. First, H-grid
takes up more memory space for a given cell capacity c,
as compared with grid index. This is because H-grid index
is more complicated and it needs extra memory space to
maintain the hierarchical structures. Second, the memory
usage of H-grid index varies, as c or m changes. We can
see from Fig. 8(a), memory usage of H-grid increases as
cell capacity increases from 35 to 40. The main reason for
this is because the inner data structure we used for storing
the objects of each cell is an array based list. Specifically,
array based list initially needs to be allocated with a fixed
maximum size max size, when the number of objects
exceeds max size, JVM will dynamically increase it to a
much bigger one which then causes the memory overhead
and produces the results shown in Fig. 8(a). Third, though
the grid index shows a stable and relatively small memory
usage among the test cases in Fig. 8(a), it does not represent
that the grid index consumes stable memory for all cases.
On the contrary, as shown in Fig. 8(c), the grid index could
be very memory consuming if we increase its cell number.
Update time. The update operation is triggered when an
object moves from one cell to another. Fig. 8(d) and Fig. 8(e)
report the update time of grid index and H-grid index with
regard to the cell capacity c and split factor m, respectively.
In general, both indices incur short update time, e.g., , the
update time for all test cases shown in Fig. 8(d) and 8(e)
is below 0.035 ms. Compared with the grid index, H-grid
index requires slightly longer update time since it incurs
split or merge operations while grid index does not. Hence,
as shown in Fig. 8(d), curves corresponding to two H-grid
indices are above that of the grid index. Besides, the grid
index has a stable update time with respect to the cell
capacity, however, the update time for H-grid index has
an obvious descending trend when the cell capacity grows.
The reason behind is that a larger cell capacity indicates a
larger cell range, which can reduce the possibility of update
operation, namely the object has a smaller chance to move
from one cell to another. The last observation made from
Fig. 8(e) is that the update time of H-grid index decreases
as the split factor increases and this trend is more obvious
when the cell capacity is small. This can be explained by the
reason that a larger split factor can help H-grid maintain
more information in the same level of cells and the update
operations probably only happen in a very limited area
within the same cell level. On the other hand, a smaller
split factor generates a H-grid with more levels and it is
very likely that the split and merge operations are done

across multiple levels which incur many recursive process-
ing steps.

In conclusion, though the grid index has quick update,
it gains its time efficiency by sacrificing the space resource,
i.e., the memory. Hence, the performance of MOVNet is also
limited. The H-grid index requires slightly longer update
time as compared with the grid index, but they two are
in the same order of magnitude. More importantly, H-
grid index scales well with the memory through tuning
the parameters of the cell capacity and split factor. As a
result, SIMkNN could be more scalable when performing in-
memory kNN query processing. Next, we further investi-
gate the performance of SIMkNN.

5.2 Result Space Estimation Effect

In this section, we compare the effect of result space estima-
tion in both MOVNet and SIMkNN. Specifically, two metrics
were used for the evaluation: (1) the number of objects
included in the estimated space and (2) the time spent on
estimation.
Object number. Fig. 9(a) and Fig. 9(b) plot the number of ob-
jects that are evaluated in SIMkNN under H-grid index and
that in MOVNet under the grid index. There are three main
observations. First, the estimated result space of MOVNet
bounds more objects than that of SIMkNN, which justifies
that estimated space of SIMkNN underH-grid index is more
effective as it covers a smaller search space. For example,
the number of objects evaluated under MOVNet is twice of
that under SIMkNN, as shown in Fig. 9(a). Second, the object
number increases as the cell capacity grows, e.g., for SIMkNN
with m = 8, its object number in the test case of cell capacity
20 is 121.37 and it increases to 158.8 when cell capacity
grows to 60. Third, as shown in Fig. 9(b), the number of
objects grows proportionally with the query request k for
both MOVNet and SIMkNN. This is because the larger the
k is, the larger the search space is. In addition, the number
of objects fallen within the search space of SIMkNN is far
less than that of MOVNet, e.g., for test case of k = 10,
only 24.64 objects in average are retrieved for the network
distance based processing in SIMkNN while MOVNet needs
to consider 172.69 objects. This gap is narrowed as k grows.
Therefore, compared with MOVNet, it is reasonable to infer
that the smaller the k is, the more significant the advantage
of SIMkNN is.
Estimation time. Fig. 10 reports the time needed for result
space estimation in both MOVNet and SIMkNN as well
as their corresponding ratios with respect to the overall
query processing time. Clearly, for most test cases, SIMkNN
consumes more time than MOVNet for estimating the re-
sult space. This is because the space expansion in SIMkNN
involves the computation overhead of finding the neighbors
for search area. As a result, SIMkNN needs more time than
MOVNet for the result space estimation. There is one ex-
ceptional case in each figure. As shown in Fig. 10(a), when
the cell capacity is 60, the estimation time of both SIMkNN
bars has decreased significantly whereas the MOVNet bar
grows longer, which leads to the result that SIMkNN spends
less time than MOVNet to complete the estimation when
the cell capacity is 60. This is interesting since SIMkNN
involves more computation overhead than MOVNet and
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it is expected to consume more time. This contradiction is
caused by the fact that as cell capacity grows, MOVNet
may need to retrieve more objects, and the time for doing
this cancels out the overhead of SIMkNN or even makes the
MOVNet less efficient. The other exceptional case refers to
the test case of k = 10 in Fig. 10(b). Given a large split factor
and a small k, SIMkNN may not need as much computation
as MOVNet does to expand the space. This is because that
MOVNet is not adaptable to the skewed distribution of
objects, so more expansions and more objects may require
extra computation effort from MOVNet.

Last but not least, though the time required by the
search space estimation step in SIMkNN is generally more
than that in MOVNet, the object number in the estimated
area of SIMkNN is much smaller than that of MOVNet. In
other words, the input to the next step of network distance
based evaluation of SIMkNN is much smaller than that
under MOVNet. As shown in Fig. 10(c) and Fig. 10(d), the
estimation time only account for less than 1% of total query
time in all cases though SIMkNN has a little bit higher ratio
than that of MOVNet. Note that the ratio gap between them
decreases as the cell capacity or k grows in general. Thus, the
inefficiency so far for SIMkNN is not a drawback and instead,
the effort for returning less objects will help SIMkNN save
computation in the next phase that is much more expensive.

5.3 kNN Query Performance
In this set of experiments, we study the kNN query per-
formance of SIMkNN in terms of the response time. First,
to demonstrate the efficiency of the in-memory index of
SIMkNN, we implemented its disk version Disk HgkNN,
where the road network data indexed by the R-tree is stored
in the disk while theH-grid for indexing the moving objects
is maintained in the memory. Second, we compare the
performance of SIMkNN with MOVNet and another state-
of-the-art kNN algorithm IER-PHL [17] that is originally
designed for static objects. To facilitate the comparison
and to demonstrate the impact of location updates on the
performance of kNN searches, we simulate different move-
ment scenarios where moving objects have different location
update frequencies. Third, we study the relation between
response time and space requirements in terms of memory
usage for different algorithms. Last but not least, we report

TABLE 3
Parameters settings under different memory usages

0.8G 1.0G 1.2G 1.6G 1.8G
SIMkNN m=2,

c =100
m=4,
c =150

m=8,
c=125

m=6,
c=200

m=2,
c=75

MOVNet c =100 c = 2.4 c = 1.7 c =1 c = 0.16
IER-PHL c=63 c=59 c=56 c=50 c=48

the number of objects that need evaluating during the query
processing under different algorithms to explain the main
factor that contributes to the high performance of SIMkNN.
Memory vs Disk. Fig. 11 plots the query processing re-
sponse time of SIMkNN and its disk version Disk HgkNN
as a function of k, cell capacity c and the split factor
m, respectively. Moreover, corresponding I/O counts for
Disk HgkNN are also plotted. First of all, compared with
SIMkNN, Disk HgkNN consumes much more time for all
cases. This is because that retrieving the topological struc-
ture information of the road network from the disk requires
many I/O operations (in thousands), as demonstrated in
Fig. 11(b), Fig. 11(d) and Fig. 11(f) accordingly. Second, as
shown in Fig 11(a), the response time of both SIMkNN and
Disk HgkNN grows proportionally with k, which is obvious
since bigger k requires more query processing work to be
done. Moreover, the gap between them becomes larger after
k = 80. The reason for this is that Disk HgkNN requires more
I/O operations to retrieve more road network data from the
disk as k grows, which is shown in Fig. 11(b). Third, for
cell capacity and split factor, the curves in Fig. 11(c) and
Fig. 11(e) fluctuate and the optimal case exists for different
parameter settings. Generally, based on the results shown in
the figure, SIMkNN can report the answer for k = 10 from
one million objects within 0.2 seconds, which is twice faster
than its disk version Disk HgkNN. Hence, placing both R-
tree and H-grid in the memory can significantly reduce the
response time.

Last but not least, we also notice an interesting trend
from Fig. 11(d) that the I/O count firstly decreases as cell
capacity c increases from 50 to 200, and then suddenly
grows up when c = 250. This can be explained by the reason
that with the increment of cell capacity, the estimation space
will shrink so that Disk HgkNN retrieves less road network
data from the disk. However, when c increases to 250,
the cells are relatively coarse-grained so that merely one
expansion would require much road network information.
This finding also tells us that carefully tuning the parameter
c is important to derive the desired efficiency. The similar
result is also applicable to the split factor m.
Movement Scenarios. In this part, we simulate different
movement scenarios by controlling the number of objects
changing their positions. 0% movement indicates that there
is no object moving, while 100% movement means that all
the objects are moving and have their locations changed.
In addition, we fix the space requirement (0.8GB) by em-
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Fig. 11. The performance of kNN query processing (memory vs disk)

pirically determining the parameters of each algorithm.
In order to avoid skewness towards large values of long
response time, Fig. 12 is plotted with a logarithmic scale
of base 10. Note that, the response time here consists of
index update time and kNN query processing time. As we
can see from Fig. 12, SIMkNN outperforms the state-of-the-
art method IER-PHL (more than an order of magnitude)
and MOVNet consistently under all the cases. Specifically,
what we found interesting here is that, even for the static
case where no position update occurs, e.g., Fig.12(a), our
SIMkNN is still faster than IER-PHL. The reason behind this
could be explained by: 1) to obtain k-nearest objects by
Euclidean distance, IER-PHL needs to retrieve many R-tree
nodes, which is very time-consuming, and 2) when k value
is big (e.g. 100), it costs much time for IER-PHL to obtain
subsequent Euclidean neighbors, because IER-PHL needs
to repeatedly find the next Euclidean nearest object until
its network distance is greater than the network distance of
current k-th candidate object. However, as for SIMkNN, since
k is relatively small as compared with the number of total
moving objects (1 million in our experiment), it can obtain
k-nearest neighbors quickly by expanding a small portion
of the road network.

Furthermore, when comparing MOVNet with SIMkNN,

we can see from all figures that MOVNet needs more
time for answering the kNN query than SIMkNN under
different memory usages. Specifically, as shown in Fig. 12
where MOVNet and SIMkNN both consume 0.8GB memory,
SIMkNN is faster than MOVNet for almost one order of mag-
nitude in terms of response time. The second observation is
that the response time for both methods experiences a rise
with respect to k since more space expansions and network
distance based evaluations are needed.
Space Requirements. In next set of experiments, we study
the efficiency of different algorithms under different mem-
ory space requirements. To this end, we performed extensive
experiments to empirically determine the relations between
the parameters and the memory usages. The results are
shown in Table 3. The response time for kNN query (k = 10)
in Fig 13 is plotted with a logarithmic scale of base 10.
There are two main observations. First, SIMkNN consistently
outperforms other algorithms under different memory con-
sumption. Specifically, it is one order of magnitude faster
than IER-PHL, while 1.2 orders of magnitude faster than
MOVnet at the beginning and the gap between MOVNet
and SIMkNN narrows as the memory usage increases, e.g.,
they are almost same when memory usage is 1.8GB. The
reason for the narrowing gap is that each cell in the grid
index of MOVNet is shrinking which makes the overhead of
query processing within MOVNet smaller, i.e., less objects
are retrieved after space estimation. Second, both SIMkNN
and IER-PHL are relatively insensitive to the varying mem-
ory usage. For SIMkNN, it is possibly because the effect of
one factor (e.g., split factor) cancels out that of the other
one (e.g., cell capacity). As for IER-PHL, the R-tree index for
objects plays an important role to make it stable.
Computed object number. We have already demonstrated
the excellent performance of SIMkNN in above experiments.
In the following, we report the number of objects that re-
quire evaluation during kNN search, a key factor that affects
the search performance. To be more specific, we report
the number of objects (|Oin(SS)|) derived from estimated
search space, and the total number of objects (|Oevl|) that
have been evaluated during the query processing of SIMkNN
and MOVNet. Note that we exclude IER-PHL from this set
of experiments because of its poor performance. We also
report the ratio |Oin(SS)|

|Oevl| . If |Oin(SS)|
|Oevl| > 1, the extra space

expansion is needed; otherwise the final query results can
be found within the estimated result space. The higher the
ratio value is, the more the extra effort is required.

Fig. 14(a) reports the |Oevl| number for test cases de-
picted in Fig. 12. When restricting the memory usage to
0.8GB, the number of computed objects in SIMkNN only
accounts for maximum 20% of the object number under
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Fig. 12. The performance of kNN query processing in different movement scenarios(0.8G)
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MOVNet, which well explains why SIMkNN outperforms
MOVNet with a much shorter response time as shown in
Fig. 12. In addition, from Fig. 14(b) we can see that the value
of |Oin(SS)|

|Oevl| under MOVNet is greater than 2 and it increases
slightly as k grows, which indicates that objects in estimated
area of MOVNet cannot satisfy the query request and extra
space expansions after the estimation phase are needed.
On the contrary, the ratio values under SIMkNN curves are
below 1 which demonstrates that the expected query results
fall inside the estimated area and no more extra expansion
is needed. Fig. 14(c) and Fig. 14(d) report the results under
1.6GB memory usage. Note that, even two series of bars for
SIMkNN have same number of objects at k = 80 as shown
in Fig. 14(c), SIMkNN with cell capacity of 100 is faster than
that with cell capacity of 50. This is because, in order to
find k = 80 NNs, SIMkNN of c = 50 needs to expand the
estimated area derived from the initial step of kNN search,
which imposes overhead to the response time. The ratio
values shown in Fig. 14(d) prove this explanation.

6 RELATED WORK

The problem of kNN query processing in spatial database
has been well studied. A large number of methods could
be found in literature for kNN search. We group them to
four categories based on the distance metric employed and
whether the object is static.The work in first two categories
focuses on the objects that are static, while we are interested
in kNN search over moving objects. In the end of this
section, we also present some related work for in-memory
moving objects indexing.
Euclidean Distance based kNN Query for Static Objects.
Many works in this category use R-tree [19] to answer
nearest neighbor queries. Roussopoulos et al. [20] proposed
an efficient branch-and-bound R-tree traversal algorithm
for searching kNNs, where they introduced two metrics
to guide an ordered depth-first spatial search. Hjaltason
et al. [21] described an incremental kNN algorithm which
reduces the amount of R-tree nodes accessed, disk I/O
as well as the number of distance calculations. There are
also other tree based kNN algorithms. For example, VoR-
Tree [22] incorporates Voronoi diagram into an R-tree and

benefits from both the neighborhood exploration capability
of Voronoi diagrams and the hierarchical structure of R-
trees.
Network Distance based kNN Query for Static Objects.
Lee et al. presented ROAD [23] to precompute the network
distance within a sub-network derived from recursively
partitioning the original network, then the sub-networks
that do not contain any object will be skipped from exami-
nation. The pruning effect of ROAD is not effective when the
objects are widely scattered, and to address this, a balance
tree G-tree [24] was proposed and it outperforms ROAD
by only accessing tree branches containing objects. Deniel
et al. [25] designed a unified framework by emphasizing
the acceleration of shortest path processing for points-of-
interest related queries and the online version of their algo-
rithm outperformed both G-tree and ROAD. More recently,
Tenindra et al. [17] revisited Incremental Euclidean Restriction
(IER) method and found it is often the best performing
technique if a simple improvement is added. The techniques
involved in this category are different from ours since they
are aimed for static objects where the frequency of objects
location updates is very low. However, location update is
very frequent in our work, as we focus on objects that keep
moving in road network.
Euclidean Distance based kNN Query for Moving Objects.
Yu et al. [15] presented a hierarchical grid model as well
as an algorithm for processing kNN query over moving
objects. Though our work is based on the idea of hierarchical
grid model, we improved the model with the novel cell
communication technique and integrated it with the dual-
index driven kNN algorithm. Recently, to handle the vast
volume of data and concurrent queries that are increasingly
common in kNN applications, Yu et al. [26] designed a
dynamic strip index (DSI) for distributed computing and
based on which, a distributed kNN search algorithm was
also proposed. All the above works in this category do not
consider network distance computation, and hence they are
not suitable for our problem setting.
Network Distance based kNN Query for Moving Objects.
Our problem belongs to this category. Wang et al. [6], [8] first
proposed a dual-index driven system called MOVNet which
can deal with kNN queries. SIMkNN improves the kNN
query processing within MOVNet as follows: (1) SIMkNN
can better adapt to the skewed distribution of moving ob-
jects; and (2) SIMkNN outperforms MOVNet in terms of time
and memory efficiency. In addition, MOVNet maintains the
connectivity information of road network in an on-disk
R-tree, whereas SIMkNN is a full in-memory kNN search
technique. Chen et al. [27] proposed a method that can
reduce the updates via a dynamic data structure adaptive
unit to capture the movement bounds of the objects. Though
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Fig. 14. Insights study with different memory usage

that technique can be extended to support kNN query, its
performance depends on the prediction method used for
update. Moreover, the factor of data distribution is also not
considered. Lee et al. [28] proposed a lightweight spatial
index based on a hierarchical spatial data structure called
geohash [29], which is a geocoding system for latitude and
longitude. They demonstrated the implementation of the
index on top of HBase to support the spatial query process-
ing. Their method is based on a distributed implementation
while SIMkNN is centralized.

Finally, in terms of in-memory indexing for the moving
objects, managing a very large number of location updates
is a critical issue that needs to be carefully addressed.
Frentzos [30] proposed the FNR-Tree which consists of two
layers of R-Trees, the lower layer is a 2-D R-Tree to index
the network structure while on top of it is a forest of 1-D R-
Trees indexing the moving objects inside a given link of the
network. Due to the reason that each edge in the network
model used in FNR-Tree can represent only a single line
segment, many entries and updates in the index structure
occur. To overcome this disadvantage, Almeida et al. [31]
proposed the MON-Tree where a hash structure pointing to
the bottom level R-Trees was introduced. Generally, these
tree-based indices are expensive for location updates be-
cause of the node reconstruction. Therefore, people usually
prefer to use in-memory grid structure [15], [32], [33], [34]
to achieve the efficiency when indexing the moving objects.

Darius et al. [13] systematically explored the perfor-
mance of two basic moving objects indexes, i.e., the uniform
grid and the R-tree, through comprehensive experimental
comparison. According to their investigations, both grid
and R-tree indexes tend to perform worse when the mov-
ing objects are non-uniformly distributed, which precisely
justifies the necessity of our work, i.e., designing a new
index method that can not only handle frequent updates
but also support the efficient query processing. Later, Darius
et al. [35] proposed an in-memory indexing method for
moving objects which can exploit the parallelism offered
by modern multi-core processors. However, they didn’t
consider the skewness of moving objects. In their recent
work [36], they showed that the implementation details of
the data structures and algorithms are very important for
performance gain in the main-memory setting. Compared
with their work, we focus on the high-level design and
implementation for the techniques proposed in our work.
Simba [37] is a distributed system built on Spark to support
the scalable and efficient in-memory spatial query process-
ing and analytics. Several classic index structures including
R-trees embedded in Simba are optimized for Spark RDDs
[38]. Simba can be viewed as a framework for general spatial
queries while SIMkNN is proposed as a specified method to

support the moving object kNN query.

7 CONCLUSION

This paper proposes SIMkNN, a scalable and in-memory
method for kNN query processing over moving objects
in road networks. SIMkNN is dual-index driven, where a
hierarchical grid index is used to manage the moving objects
and a R-tree is leveraged to store the connectivity informa-
tion of the underlying road network. SIMkNN employs two
consecutive phases, namely, result space estimation and kNN
retrieval, to answer kNN queries. Compared with previous
work, because of the nature of the hierarchical grid index,
SIMkNN can adapt much better to the skewed distribution of
moving objects. To derive the estimated area in the first step,
SIMkNN proposes the cell communication technique that can
keep each cell within the hierarchical grid being aware of its
neighbours at any time. Additionally, a conservative space
expansion algorithm has been proposed to slowly expand
the search space. Extensive experimental evaluation shows
that SIMkNN is more scalable than the baseline method for
moving objects that are not uniformly distributed.

In our future work, we plan to i) further study the
relations between different object distributions and the pa-
rameter settings, such as the split factor and cell capacity;
ii) investigate other types of spatial queries and see whether
the cell communication technique proposed in this paper
could be used for improvement; and iii) extend our work
to a distributed setting to answer the query in parallel, in
order to support large scale kNN query processing.
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